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Abstract 

  

 Chronic wounds plague a large number of patients worldwide, and hyperbaric oxygen 

therapy has been demonstrated to allow some of these problematic wounds to follow a more 

typical healing profile.  Unfortunately, most of the evidence regarding the pathophysiological 

basis of hyperbaric oxygen therapy as a treatment remains empirical. In this paper, we develop a 

mathematical model that allows us to quantify the diffusion of oxygen in wound bed tissue in 

response to treatment with hyperbaric oxygen therapy over time. We then validate our results 

and discuss some potential applications. 
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Background 

  

Wound healing is a highly regulated and complex process.  Typically, wound healing 

progresses through stages of hemostasis, inflammation, proliferation, and remodeling.  This 

stage-based progression applies only to acute wounds (wounds that heal within three months) 

however.  Chronic wounds fail to follow a stage-based progression, and heal erratically, if at all.  

This kind of compromised wound healing typically occurs in patients with diabetes or other 

conditions that impede proper circulation, such as pressure ulcers or venous leg ulcers.  It is 

assumed that the hypoxic environment associated with the poor circulation in these conditions is 

to blame. 

 An estimated 6.5 million people in the United States suffer from chronic non-healing 

wounds.  Approximately 15% of diabetic patients will suffer from some sort of lower limb ulcer 

in their lifetime, and 24% of these injuries will result in a form of limb amputation. 

Hyperbaric oxygen therapy is the clinical use of oxygen at higher pressures than 

atmospheric pressure, and has been demonstrated to aid in the healing of difficult wounds.  

Typical therapy consists of placing the patient in a chamber (see Figure 1) maintained at 100% 

oxygen for a brief period of time, and multiple sessions are the norm.  Patients breathe 100% 

oxygen most of the time, but are given periodic “air breaks” to avoid the risks associated with 

oxygen toxicity. 

 

 
Figure 1:  A hyperbaric chamber used to provide oxygen therapy to patients. 

 

The underlying causes and pathophysiological mechanisms underlying the success of 

hyperbaric oxygen therapy have not been thoroughly investigated, and most of the evidence in 

support of its use is empirical. 
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Figure 2:  Progression of healing in a chronic wound in response to hyperbaric oxygen 

therapy. 

  

Dr. Jennifer Flegg and Dr. Ian Turner of Queensland, Australia, have done some 

investigation into the diffusion of oxygen throughout tissue in response to hyperbaric oxygen 

therapy.  The three major quantifiable phenomena they considered were the diffusion of oxygen 

through healthy tissues surround the wound bed, the migration of capillary tips as a result of 

hyperbaric oxygen therapy over time, and the resultant increase in blood vessel density that 

follows capillary tip migration.  Drawing inspiration from their work, we sought to quantify 

oxygen diffusion through tissue in response to hyperbaric oxygen therapy and utilize that 

information to determine what rates of exposure to a highly oxygenated environment will result 

in significantly increased oxygen levels in the wound bed. 
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Mathematical Model 

  

The mathematical model used for wound healing comprises three partial differential equations: 

oxygen concentration (    capillary tip density ( ), and blood vessel density (b).  In this model, 

for simplification, we considered a one-dimensional wound in the direction of x. The edge of the 

wound is located at x = 0 and its center lies at x = L. The wound has symmetry around the 

centerline at x = L.   

 

The equations for this model are: 

 

1. Diffused oxygen concentration (       : 

 

  

  
   

   

   
         

 

Where    is the diffusivity constant of oxygen,     is the rate of oxygen production by the 

blood vessels, and      is rate of oxygen consumption by the tissues.       , and    are all 

nonnegative constants. 

 

2. Capillary tip density (      ): 
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Where      is the Heaviside function, χ is the chemotactic coefficient,     is the rate of 

production of capillaries from the existing blood vessels, and     is rate of capillary tip death. 

Additionally,    and    are values for low and high oxygen concentration, respectively. 

 

3. Blood vessel density (      ): 

 

  

  
    

  

  
        

 

Where   
   

  
  is the speed of capillary tip migration,     is the carrying capacity rate, and     is 

the growth rate of capillaries. 
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As it is shown in this model, all of the equations are dependent on each other.  For instance, the 

PDE for diffused oxygen concentration depends on the blood vessel density, which makes the 

model complicated and difficult to solve. For simplification, our model only considers the 

diffused oxygen concentration, treating blood vessel density and capillary tip density as 

constants. 

 

  

  
   

   

   
         

 

Boundary and initial conditions: 

 

For boundary conditions, we assume that at the edge of the wound (x = 0), there are no capillary 

tips and therefore the oxygen level equilibrate so rapidly with uninjured level, meaning there is 

no flux of oxygen. Also, at x = L, due to spatial symmetry, the oxygen concentration flux 

assumed to be zero. For the initial condition, it is assumed that there are no capillary tips within 

the wound bed, and that blood vessel density is like that of normal tissue within a certain 

distance from the wound edge (0 < x < ε).  Therefore, the wound is oxygenated throughout the 

vascularized region, and due to the high demand for oxygen at rate    , balances supply at 

rate    .  Additionally, ε, the width of the wound margin which separates the healthy and 

wounded tissue, is assumed to be very small compared to L, (ε << L). 
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Analytical Solution 

 

Because our model for oxygen diffusion concentration returns a non-homogenous partial 

differential equation, separation of variables cannot be used directly.  Therefore, we first have to 

solve for a steady-state solution in order to homogenize the equation. 

 

 

The steady-state solution is derived as follows: 

 

          
  

  
   

 

  

   

   
               

   

   
           

 

     
   

  
 

                                                             

 

                 

 

 

 

Now we write our equation in terms of the steady-state solution and time-varying solution. 
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Now we have a homogenous second-order partial differential equation.  Therefore, 

separation of variables can be applied to solve the equation as follows: 
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1) Spatial Equation:   
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In order to find  , we apply the boundary conditions: 
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The spatial equation,                      
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Now we need to solve for transient equation, G(t) : 
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       is our time varying solution to our PDE.  However we first need to find our new initial 

condition and then use the Fourier transform in order to solve for the constant   . 

 

New initial conditions and the solving of    for our time varying solution are as follows: 
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The time varying solution is solved by multiplying the spatial equation         and 

transient equation (G(t)): 
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The final solution for oxygen concentration during wound healing, obtained by adding the 

steady state solution and time varying solution, is as follows: 
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In order to visualize our results, we have used parameter values from the work of Flegg et al. 

(2012) for the purposes of modeling.  These values are listed below. 

 

   = 0.18 cm
2
/day 

   = 1.04 mmHg/vessel/day 

   = 1.3 ml O2 /ml tissue/day 

       cm 

  = 1 cm 

       vessels/cm 
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By implementing these values into our analytical solution, MATLAB was utilized to obtain the 

surface plots for b = 250 vessels/cm, which is a typical value for blood vessel density in tissue.  

The results are shown from different angles in Figure 3. 

 

                 

 
Figure 3:  Oxygen concentration as a function of time and distance from the wound edge at 

a blood vessel density of 250 vessels/cm. 

 As can be seen from our surface plots, oxygen levels during hyperbaric oxygen therapy 

are highest at the edge of the wound bed, quickly depleting to values consistent with surrounding 

healthy tissue.  Because those results are dependent on a typical value for blood vessel density (b 

= 250 vessels/cm), we also considered smaller values of b (b = 200, 100, and 10) in order to 

assess changes that would occur in our model for patients with decreasing amounts of circulation 

and functional capillary density.  The results are shown in Figure 4, Figure 5, and Figure 6. 
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Figure 4:  Oxygen concentration as a function of time and distance from the wound edge at 

a blood vessel density of 200 vessels/cm 
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Figure 5:  Oxygen concentration as a function of time and distance from the wound edge at 

a blood vessel density of 100 vessels/cm. 

 

                

 

 
Figure 6:  Oxygen concentration as a function of time and distance from the wound edge at 

a blood vessel density of 10 vessels/cm. 
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See Figure 7 below for a comparison of the four surface plots side-by-side. 

 

 
Figure 7:  Oxygen concentration as a function of time and distance from the wound edge at 

varying values of blood vessel density. 

 

As can be seen most clearly in Figure 7, noting the change in z-axis values, as blood vessel 

density decreases, so too do the peak levels of oxygen concentration decrease at the edge of the 

wound bed.  At t = 0, corresponding to the time point directly after a hyperbaric oxygen therapy 

session has ended, oxygen concentration at the very edge of the wound bed (x = 0) has peaked at 

approximately 385 mmHg for a surrounding blood vessel density of 250 vessels/cm, while has 

peaked at only 210 mmHg for a surrounding blood vessel density of 10 vessels/cm.  Baseline 

oxygen levels for surrounding tissue follow a similar trend, resting at approximately 205 mmHg 

for b = 250 vessels/cm and approximately 0 mmHg for b = 10 vessels/cm.  The latter condition is 

associated with extreme cases of diseases that severely impair regional functional capillary 

density, and it is expected that response to hyperbaric oxygen therapy in these patients will be 

poor, as threshold oxygen levels (even near the edge of the wound bed) will not be reached or 

maintained after therapy at a level that facilitates wound healing. 

 

 

In order to compare trends in our results to a similar model proposed by Flegg et al (2012), we 

also plotted the oxygen concentration versus distance from the wound center at different time 
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intervals corresponding to successive treatment sessions, between which blood vessel density is 

expected to increase, as shown in Figure 8. 

 

 
Figure 8:  2D plots comparing our analytical solution (top) with solutions obtained by Flegg 

et al. (2012) (bottom), demonstrating comparable results in trends. For our analytical plot, 

t is in units of days and an initial blood vessel density of 10 vessels/cm was used. 

 

Although a direct comparison is impossible to make here due to Dr. Flegg’s non-

dimensionalization of their equation and differences in simplifications, we were mainly 

interested in the trends seen as we approached the center of the wound bed.  We were pleased to 

see that both our and their results followed a similar profile, having an initial plateau phase 

before dropping off to negligible concentrations near the center of the wound. 
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Numerical Solution 

 

We also used the finite difference method within MATLAB in order to compare our analytical 

results with a more accurate numerical approximation.  Utilizing a value of b = 100, we were 

able to achieve validation of the method we utilized in deriving our analytical solution.  As seen 

in Figure 9, results were largely comparable.  Similar comparisons were attained for all values 

of b.  As noted in our discussion of our 2D plots, differences can be accounted for in our 

simplification of the problem, as we treated b as a constant in contrast with the time-dependent 

nature of b seen in the full scenario.  Additionally, some minor discrepancies in our finite 

difference analysis result from the fact that the surface plots in our finite difference analysis 

could only be discretized up to the point depicted in Figure 9, as further discretization rendered 

plots black due to the way MATLAB produces surface plots with large numbers of points. 

 

 
Figure 9:  Surface plots comparing our analytical solution with a solution obtained via the 

finite difference method, demonstrating comparable results for a value of b = 100. 
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Applications and Conclusion 

 

 We have analyzed mathematically how oxygen diffuses into the wound space from the 

surrounding healthy tissue and establishes a local oxygen gradient, down which capillary tips 

migrate.  Our 3-D surface plots show the change of oxygen concentration as a function of both 

time and space. As was seen upon varying the parameter that corresponds to blood vessel 

density, the values of oxygen concentration shift downward as blood vessel density decreases, 

while distribution with respect to distance and time remains the same. We can utilize this facet of 

our model to compare the efficacy of treatments that are routinely used to treat non-healing 

wounds. 

 To establish the necessary conditions for successful wound healing, we use the k2, k4 

parameter analysis utilized by Flegg et al. (2009), which we will briefly discuss.  In the steady 

state scenario, the oxygen concentration w(x) is too low for capillary tip production to occur, and 

blood vessel density does not change from its initial profile.  Therefore b = b(x,0) = H(ε-x).  

From this, we note the full analytical solution for oxygen diffusion alongside the two conditions 

under which our model predicts a failure of healing for the steady-state scenario where x = [0,1]. 
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which gives us the inequalities that k2 and k4 must fall within in order for healing to occur.  

Knowing this, we can utilize the 2-D plot below (Figure 10), which compares parametric regions 

of successful vs. unsuccessful wound healing. 

 

 
Figure 10:  Overview of (k2, k4) parameter space, showing regionalization of successful and 

unsuccessful healing.  Parameter values used are wL = 0.3, wH = 0.7, and ε = 0.05. 

 

 Diabetic wounds are often low in oxygen due to an over-abundance of oxygen consuming 

inflammatory cells and bacteria.  A common treatment for these types of wounds is debridement, 

where the infected tissue is removed, which would correspond to a decrease in k4. Arterial leg 

wounds are also associated with low oxygen levels. However, this is typically due to poor 

arterial flow, and a common treatment is revascularization surgery that restores this arterial flow. 

In this scenario, revascularization will effectively increase the oxygen supply rate parameter k2. 

We can incorporate hyperbaric oxygen therapy (HBOT) into our model by assuming that during 

its application, the oxygen supply increases so that k2
HBOT

 
=
 k2 + Δk2 (Δk2 > 0). 

 

 In conclusion, we are able to utilize a model of oxygen diffusion to evaluate the effect of 

treating chronic wounds with HBOT. While the exact reasons for the improved healing rates 

remain unclear, we are able to quantifiably predict whether or not healing will occur, allowing 

better protocols to be made for appropriate patients with chronic non-healing wounds. 
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MATLAB Code: 

 
%%%%%%%%%%%%%%%%%%%%%%% ANALYTICAL SOLUTION %%%%%%%%%%%%%%%%%%%%%%%%% 
 

clear all; 

close all; 

clc; 

 
dw = 0.18; 
k2 = 1.04; 
k4 = 1.3; 
ep = 0.1; 
L = 1; 
tmesh = 0.0:0.005:0.5; 
xmesh= 0:0.01:L; 

b_0 = 250 

 
% b = 250; 
% b = 200; 
% b = 100; 
b = 10; 

  
[t,x] = meshgrid(tmesh,xmesh); % Analytical Solution 
sol_ana=0 
 for n= 1:20 
An=(2/(n*pi))*(k2*b_0/k4)*sin(n*pi*ep./L) 
sol_ana=sol_ana + An.*cos((n.*pi./L).*x).*exp((dw.*(n*pi/L)^2+k4).*(-t)) 
 end 
 sol_ana=sol_ana+(k2*b./k4) 

 

 
figure(1)  % Surface Plots 
surf(t,x,sol_ana); 
title('Analytical Solution'); 
xlabel('t(days)'); 
ylabel('x(cm)'); 
zlabel('w(x,t)(mmHg)'); 

  
sol_ana1=0 % Analytical Solution for 2D Plotting 
for t1=0.1:0.1:0.5 
 for n= 1:20 
An=(2/(n*pi))*(k2*b_0/k4)*sin(n*pi*ep/L) 
sol_ana1=sol_ana1 + An.*cos((n.*pi/L).*x).*exp((dw.*(n*pi/L)^2+k4).*(-t1)) 
 end 
 sol_ana1=sol_ana1+(k2*b/k4) 

  
figure(2) % 2D Plots 
plot(x,sol_ana1,'b'); 
hold on 
title('Oxygen Concentration vs. Distance'); 
xlabel('x(cm)'); 
ylabel('W(x,t)(mmHg)'); 
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%%%%%%%%%%%%%%%%%%%%%%% NUMERICAL SOLUTION %%%%%%%%%%%%%%%%%%%%%%%%% 

 

clear all; 
close all; 

  
dw = .18; 
k2 = 1.04; 
k4 = 1.3; 
e = 0.1; 
L = 1; 
b0 = 250; 

  
% b = 250; 
% b = 200; 
% b = 100; 
b = 10; 

  
t = 0:.005:0.5; 
s = 0:0.01:L; 

  
[t,s] = meshgrid(t,s); 

  
uss = (k2*b)/k4; 
V = 0; 

  
% Finite Difference Method 

  
for n = 1:15 
    Bn =(2./(n.*pi)).*((k2.*b0)./k4).*sin((n.*pi.*e)./L); 
    V = V + Bn.*(cos((n.*pi.*s)./L).*exp(((dw.*(((n.*pi)./L).^2))+k4).*(-

t))); 
end 
anal_sol = V + uss; 

  

  
figure(1) % Surface Plot 
surf(t,s,anal_sol); 
title('Analytical Solution'); 
xlabel('t(days)'); 
ylabel('x(cm)'); 
zlabel('W(x,t)(mmHg)'); 


